Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the “fast committor machine” (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly with the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.more » « less
-
Abstract Mercury’s orbit can destabilize, generally resulting in a collision with either Venus or the Sun. Chaotic evolution can causeg1to decrease to the approximately constant value ofg5and create a resonance. Previous work has approximated the variation ing1as stochastic diffusion, which leads to a phenomological model that can reproduce the Mercury instability statistics of secular andN-body models on timescales longer than 10 Gyr. Here we show that the diffusive model significantly underpredicts the Mercury instability probability on timescales less than 5 Gyr, the remaining lifespan of the solar system. This is becauseg1exhibits larger variations on short timescales than the diffusive model would suggest. To better model the variations on short timescales, we build a new subdiffusive phenomological model forg1. Subdiffusion is similar to diffusion but exhibits larger displacements on short timescales and smaller displacements on long timescales. We choose model parameters based on the behavior of theg1trajectories in theN-body simulations, leading to a tuned model that can reproduce Mercury instability statistics from 1–40 Gyr. This work motivates fundamental questions in solar system dynamics: why does subdiffusion better approximate the variation ing1than standard diffusion? Why is there an upper bound ong1, but not a lower bound that would prevent it from reachingg5?more » « less
-
Abstract Atmospheric regime transitions are highly impactful as drivers of extreme weather events, but pose two formidable modeling challenges: predicting the next event (weather forecasting) and characterizing the statistics of events of a given severity (the risk climatology). Each event has a different duration and spatial structure, making it hard to define an objective “average event.” We argue here that transition path theory (TPT), a stochastic process framework, is an appropriate tool for the task. We demonstrate TPT’s capacities on a wave–mean flow model of sudden stratospheric warmings (SSWs) developed by Holton and Mass, which is idealized enough for transparent TPT analysis but complex enough to demonstrate computational scalability. Whereas a recent article (Finkel et al. 2021) studied near-term SSW predictability, the present article uses TPT to link predictability to long-term SSW frequency. This requires not only forecasting forward in time from an initial condition, but also backward in time to assess the probability of the initial conditions themselves. TPT enables one to condition the dynamics on the regime transition occurring, and thus visualize its physical drivers with a vector field called the reactive current . The reactive current shows that before an SSW, dissipation and stochastic forcing drive a slow decay of vortex strength at lower altitudes. The response of upper-level winds is late and sudden, occurring only after the transition is almost complete from a probabilistic point of view. This case study demonstrates that TPT quantities, visualized in a space of physically meaningful variables, can help one understand the dynamics of regime transitions.more » « less
-
Abstract Rare events arising in nonlinear atmospheric dynamics remain hard to predict and attribute. We address the problem of forecasting rare events in a prototypical example, sudden stratospheric warmings (SSWs). Approximately once every other winter, the boreal stratospheric polar vortex rapidly breaks down, shifting midlatitude surface weather patterns for months. We focus on two key quantities of interest: the probability of an SSW occurring, and the expected lead time if it does occur, as functions of initial condition. These optimal forecasts concretely measure the event’s progress. Direct numerical simulation can estimate them in principle but is prohibitively expensive in practice: each rare event requires a long integration to observe, and the cost of each integration grows with model complexity. We describe an alternative approach using integrations that are short compared to the time scale of the warming event. We compute the probability and lead time efficiently by solving equations involving the transition operator, which encodes all information about the dynamics. We relate these optimal forecasts to a small number of interpretable physical variables, suggesting optimal measurements for forecasting. We illustrate the methodology on a prototype SSW model developed by Holton and Mass and modified by stochastic forcing. While highly idealized, this model captures the essential nonlinear dynamics of SSWs and exhibits the key forecasting challenge: the dramatic separation in time scales between a single event and the return time between successive events. Our methodology is designed to fully exploit high-dimensional data from models and observations, and has the potential to identify detailed predictors of many complex rare events in meteorology.more » « less
An official website of the United States government
